
Docker, Containers, and the
Future of Application Delivery

In the four months since we launched

• >50,000 pulls

• >4,000 github stars

• >100 significant contributors

• >150 projects built on top of docker
• UIs, mini-PaaS, Remote Desktop….

• 1000’s of Dockerized applications
• Memcached, Redis, Node.js…

• Integration in
Jenkins, Travis, Chef, Puppet, Vagrant
and OpenStack

• Meetups arranged around the
world…with organizations like
Ebay, Uber, Mozilla, Cloudflare, and
Rackspace presenting on their use of
Docker

Why all the excitement?

Contents

• The challenge

• The solution

• Why Docker and Containers Matter?

• How They Work?

• Alternative/Complementary Approaches

Market View: Evolution of IT

1995 2015

Running on any
available set of

physical resources
(public/private/

virtualized)

Assembled by
developers using

best available
services

Thin app on
mobile, tabletThick, client-server app

on thick client

Well-defined stack:
- O/S
- Runtime
- Middleware

Monolithic
Physical

Infrastructure

Challenges

2015

How to ensure services
interact

consistently, avoid
dependency hell

How to migrate & scale
quickly, ensure
compatibility

How to avoid n X n
different configs

Running on any
available set of

physical resources
(public/private/

virtualized)

Assembled by
developers using

best available
services

Thin app on
mobile, tablet

Static website

Web frontend

User DB

Queue Analytics DB

Background workers

API endpoint

nginx 1.5 + modsecurity + openssl + bootstrap 2

postgresql + pgv8 + v8

hadoop + hive + thrift + OpenJDK

Ruby + Rails + sass + Unicorn

Redis + redis-sentinel

Python 3.0 + celery + pyredis + libcurl + ffmpeg + libopencv + nodejs +

phantomjs

Python 2.7 + Flask + pyredis + celery + psycopg + postgresql-client

Development VM

QA server

Public Cloud

Disaster recovery

Contributor’s laptop

Production Servers

The Challenge
M

u
lt

ip
lic

it
y

o
f

St
ac

ks
M

u
lt

ip
lic

it
y

o
f

h
ar

d
w

ar
e

e

n
vi

ro
n

m
en

ts

Production Cluster

Customer Data Center

D
o

 se
rvice

s an
d

 ap
p

s
in

te
ract

ap
p

ro
p

riately?

C
an

 I m
igrate

sm

o
o

th
ly an

d

q
u

ickly?

Results in N X N compatibility nightmare

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Development

VM
QA Server

Single Prod

Server

Onsite

Cluster
Public Cloud

Contributor’s

laptop

Customer

Servers

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

A useful analogy…

M
u

lt
ip

lic
it

y
o

f
G

o
o

d
s

M
u

lt
ip

ili
ci

ty
o

f
m

e
th

o
d

s
fo

r
tr

an
sp

o
rt

in
g/

st
o

ri
n

g

D
o

 I w
o

rry ab
o

u
t

h
o

w
 go

o
d

s in
te

ract
(e

.g. co
ffe

e
 b

e
an

s
n

ext to
 sp

ice
s)

C
an

 I tran
sp

o
rt q

u
ickly

an
d

 sm
o

o
th

ly
(e

.g. fro
m

 b
o

at to
 train

to

 tru
ck)

Cargo Transport Pre-1960

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

? ? ? ? ? ? ?

Also an NxN Matrix

Contents

• The challenge

• The solution

• Why Docker and Containers Matter?

• How They Work?

• Alternative/Complementary Approaches

M
u

lt
ip

lic
it

y
o

f
G

o
o

d
s

M
u

lt
ip

lic
it

y
o

f
m

et
h

o
d

s
fo

r
tr

an
sp

o
rt

in
g

/s
to

ri
n

g

D
o

 I w
o

rry ab
o

u
t

h
o

w
 go

o
d

s in
teract

(e.g. co
ffee

 b
e

an
s

n
ext to

 sp
ices)

C
an

 I tran
sp

o
rt

q
u

ickly an
d

 sm
o

o
th

ly
(e.g. fro

m
 b

o
at to

train

 to
 tru

ck)

Solution: Intermodal Shipping Container

…in between, can be loaded and

unloaded, stacked, transported

efficiently over long distances,

and transferred from one mode

of transport to another

A standard container that is

loaded with virtually any

goods, and stays sealed until

it reaches final delivery.

This eliminated the NXN problem…

and spawned an Intermodal Shipping Container Ecosystem

• 90% of all cargo now shipped in a standard container
• Order of magnitude reduction in cost and time to load and unload ships
• Massive reduction in losses due to theft or damage
• Huge reduction in freight cost as percent of final goods (from >25% to <3%)
 massive globalizations
• 5000 ships deliver 200M containers per year

Static website Web frontend User DB Queue Analytics DB

Development

VM
QA server Public Cloud Contributor’s

laptop

Docker is a shipping container system for
code

M
u

lt
ip

lic
it

y
o

f
St

ac
ks

M
u

lt
ip

lic
it

y
o

f
h

ar
d

w
ar

e
en

vi
ro

n
m

e
n

ts

Production

Cluster
Customer Data

Center

D
o

 services an
d

 ap
p

s
in

teract
ap

p
ro

p
riately?

C
an

 I m
igrate

sm
o

o
th

ly an
d

 q
u

ickly

…that can be manipulated using

standard operations and run

consistently on virtually any

hardware platform

An engine that enables any

payload to be encapsulated

as a

lightweight, portable, self-

sufficient container…

Static website Web frontend User DB Queue Analytics DB

Development

VM
QA server Public Cloud Contributor’s

laptop

Or…put more simply
M

u
lt

ip
lic

it
y

o
f

St
ac

ks
M

u
lt

ip
lic

it
y

o
f

h
ar

d
w

ar
e

en
vi

ro
n

m
e

n
ts

Production

Cluster
Customer Data

Center

D
o

 services an
d

 ap
p

s
in

teract
ap

p
ro

p
riately?

C
an

 I m
igrate

sm
o

o
th

ly an
d

 q
u

ickly

Operator: Configure Once, Run
Anything

Developer: Build Once, Run
Anywhere (Finally)

Static website

Web frontend

Background workers

User DB

Analytics DB

Queue

Development

VM
QA Server

Single Prod

Server

Onsite

Cluster
Public Cloud

Contributor’s

laptop

Customer

Servers

Docker solves the NXN problem

Contents

• The challenge

• The solution

• Why Docker and Containers Matter?

• How They Work?

• Alternative/Complementary Approaches

Why containers matter

Physical Containers Docker

Content Agnostic The same container can hold almost any
type of cargo

Can encapsulate any payload and its
dependencies

Hardware Agnostic Standard shape and interface allow same
container to move from ship to train to
semi-truck to warehouse to crane
without being modified or opened

Using operating system primitives (e.g. LXC)
can run consistently on virtually any
hardware—VMs, bare metal, openstack,
public IAAS, etc.—without modification

Content Isolation and
Interaction

No worry about anvils crushing bananas.
Containers can be stacked and shipped
together

Resource, network, and content isolation.
Avoids dependency hell

Automation Standard interfaces make it easy to
automate loading, unloading, moving,
etc.

Standard operations to run, start, stop,
commit, search, etc. Perfect for devops: CI,
CD, autoscaling, hybrid clouds

Highly efficient No opening or modification, quick to
move between waypoints

Lightweight, virtually no perf or start-up
penalty, quick to move and manipulate

Separation of duties Shipper worries about inside of box,
carrier worries about outside of box

Developer worries about code. Ops worries
about infrastructure.

Why Developers Care

• Build once…run anywhere
• A clean, safe, hygienic and portable runtime environment for your app.

• No worries about missing dependencies, packages and other pain points during
subsequent deployments.

• Run each app in its own isolated container, so you can run various versions of libraries
and other dependencies for each app without worrying

• Automate testing, integration, packaging…anything you can script

• Reduce/eliminate concerns about compatibility on different platforms, either your own or
your customers.

• Cheap, zero-penalty containers to deploy services? A VM without the overhead of a VM?
Instant replay and reset of image snapshots? That’s the power of Docker

Why Developers Care

―Docker interests me because it allows simple environment
isolation and repeatability. I can create a run-time environment
once, package it up, then run it again on any other machine.
Furthermore, everything that runs in that environment is isolated
from the underlying host (much like a virtual machine). And best
of all, everything is fast and simple.‖

-Gregory Szorc, Mozilla Foundation
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/

http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/
http://gregoryszorc.com/blog/2013/05/19/using-docker-to-build-firefox/

Why Devops Cares?

• Configure once…run anything
• Make the entire lifecycle more efficient, consistent, and repeatable

• Increase the quality of code produced by developers.

• Eliminate inconsistencies between development, test, production, and customer
environments

• Support segregation of duties

• Significantly improves the speed and reliability of continuous deployment and continuous
integration systems

• Because the containers are so lightweight, address significant performance, costs,
deployment, and portability issues normally associated with VMs

Contents

• The challenge

• The solution

• Why Docker and Containers Matter?

• How They Work

• Alternative/Complementary Approaches

App
A

Containers vs. VMs

Hypervisor (Type 2)

Host OS

Server

Guest
OS

Bins/
Libs

App
A’

Guest
OS

Bins/
Libs

App
B

Guest
OS

Bins/
Libs

A
p

p
 A

’

D
o

cker

Host OS

Server

Bins/Libs

A
p

p
 A

Bins/Libs

A
p

p
 B

A
p

p
 B

’

A
p

p
 B

’

A
p

p
 B

’
VM

Container

Containers are isolated,
but share OS and, where
appropriate, bins/libraries

Guest
OS

Guest
OS

Why are Docker containers lightweight?

Bins/
Libs

App
A

Original App
(No OS to take
up space, resources,
or require restart)

A
p

p
 Δ

B
in

s/

App
A

Bins/
Libs

App
A’

Guest
OS

Bins/
Libs

Modified App

Union file system allows
us to only save the diffs
Between container A
and container
A’

VMs
Every app, every copy of an
app, and every slight modification
of the app requires a new virtual server

App
A

Guest
OS

Bins/
Libs

Copy of
App

No OS. Can
Share bins/libs

App
A

Guest
OS

Guest
OS

VMs Containers

What are the basics of the Docker system?

Source
Code

Repository

Dockerfile
For
A

Docker Engine

Docker
Container

Image
Registry

Build

D
o

cker

Host 2 OS 2 (Linux)

C
o

n
tain

er A

C
o

n
tain

er B

C
o

n
tain

er C

C
o

n
tain

er A

Push

Search
Pull

Run

Host 1 OS (Linux)

Changes and Updates

Docker Engine

Docker
Container

Image
Registry

Docker Engine

Push

Update

Bins/
Libs

App
A

A
p

p
 Δ

B
in

s/

Base
Container

Image

Host is now running A’’

Container
Mod A’’

A
p

p
 Δ

B
in

s/

Bins/
Libs

App
A

B
in

s/

Bins/
Libs

App
A’’

Host running A wants to upgrade to A’’.
Requests update. Gets only diffs

Container
Mod A’

Contents

• The challenge

• The solution

• Why Docker and Containers Matter?

• How They Work

• Alternative/Complementary Approaches

Alternatives/Complementary Approaches

• Policy
Reduce Rows

• Configuration Management
Reduce Columns

• Traditional HW
Virtualization

• Packaging Automation

Alternative 1: Impose Consistent Dev Environment

Description:
• Try to impose a consistent

development environment

Challenges:
• Goes against 20 years of

development trends

• Can’t predict what will be
needed for next app

• Doesn’t work outside confines
of the enterprise (e.g. at
customer sites)R

e
d

u
ce

 #
 r

o
w

s
vi

a
p

o
lic

y

Alternative 2: Configuration Mgt/Automation

Description:
• Automate creation of

consistent runtime
environment for different
machines

Challenges:
• Chef/Puppet etc. are

extremely useful for creating
more consistent machine
configuration

• But…has to be redone for
each new application or
version

• Brittle

• Doesn’t work easily outside
confines of the enterprise
(e.g. at customer sites)

Reduce # Columns via Chef/Puppet/etc.

Alternative 3: Hardware Virtualization

Description:
• Create a virtual server for each

app

Challenges:
• HW Virtualization great for

many uses cases (e.g. server
consolidation)

• But..
heavyweight/expensive/slow

• Need different VM for different
hypervisor environments

• Has to be completely redone
for each new application or
version

• Not good for scale out, hybrid
clouds, massive
clustering, iterative
development

Alternative 4: Package Automation

Description:
• Automate creation of different

VMs for different

Challenges:
• A great solution for certain

distribution challenges, but…

• VMs are still
heavyweight/expensive

• Has to be completely redone
for each new application or
version

• Better idea: combine
containers plus automation

Use Cases—From Our Community

Use Case Examples Link

Build your own PaaS Dokku - Docker powered mini-Heroku. The smallest PaaS implementation you’ve

ever seen

http://bit.ly/191Tgsx

Web Based

Environment for

Instruction

JiffyLab – web based environment for the instruction, or lightweight use of, Python

and UNIX shell

http://bit.ly/12oaj2K

Easy Application

Deployment

Deploy Java Apps With Docker = Awesome http://bit.ly/11BCvvu

Running Drupal on Docker http://bit.ly/15MJS6B

Installing Redis on Docker http://bit.ly/16EWOKh

Create Secure

Sandboxes

Docker makes creating secure sandboxes easier than ever http://bit.ly/13mZGJH

Create your own SaaS Memcached as a Service http://bit.ly/11nL8vh

Automated Application

Deployment

Push-button Deployment with Docker http://bit.ly/1bTKZTo

Continuous Integration

and Deployment

Next Generation Continuous Integration & Deployment with dotCloud’s Docker and

Strider

http://bit.ly/ZwTfoy

Lightweight Desktop

Virtualization

Docker Desktop: Your Desktop Over SSH Running Inside Of A Docker Container http://bit.ly/14RYL6x

http://blog.docker.io/2013/07/docker-desktop-your-desktop-over-ssh-running-inside-of-a-docker-container/

Want to learn more?

• San Francisco Meetup: July 30

• Boston Openstack Meetup: August 14

• New York Meetup: Aug 21

• Austin Openstack Meetup: Sept 12

• Boston Docker Meetup: Sept 23

• www.docker.io

www.docker.io

