
Continuous Integration &
Delivery Example

1

https://oncoscape.sttrcancer.org

Robert McDermott
rmcdermo@fredhutch.org

Center IT

“Continuous Integration is a software development practice where members of a
team integrate their work frequently; usually each person integrates at least daily –
leading to multiple integrations per day.” --Martin Fowler

“Continuous Delivery is a software development discipline where you build
software in such a way that the software can be released to production at any
time” --Martin Fowler

Continuous Deployment is a third term that’s sometimes confused with Continuous
Delivery. Where Continuous Delivery provides a process to create frequent releases
but not necessarily deploy them, Continuous Deployment means that every change
you make automatically gets deployed through the deployment pipeline.

Continuous Integration, Delivery and Deployment

2

Oncoscape
 Project Overview: Oncoscape is a web application that hosts an integrated suite

of analysis tools for users to explore hypotheses related to molecular and clinical
data in order to better understand cancer biology and treatment options

o Technology stack: JavaScript, R, Angular.js, Node.js, Docker, AWS
o Team: 4 internal developers, 1 part time IT engineer and external developers

 Source Code Management

o GitHub: https://github.com/FredHutch/Oncoscape
o Public repository for external collaboration

 Development Workflow

o Two long running branches “master” and “develop” with a transient number of
feature branches

o Using “GitHub Flow”

o Internal workflow:

 Create a feature branch off of the develop branch
 Commit changes to the feature branch
 Create a “pull request” (PR) targeting the development branch
 Merge PR after it passes CI tests and team review
 Delete feature branch after integration is complete 3

https://github.com/FredHutch/Oncoscape

Oncoscape Continuous Integration and Delivery

 Development Workflow (continued)

o External workflow:

 Create a fork of the Oncoscape repository
 Create a feature branch
 Commit changes to the feature branch
 Create a “pull request” (PR) targeting the development branch
 Merge PR after it passes CI tests and team review
 Delete feature branch after integration is complete

 Continuous Integration

o Using CircleCI: https://circleci.com/
o CircleCI integrated with GitHub via Webhooks
o Any commits, merges or pull requests trigger the CI pipeline
o Oncoscape is automatically built, run and tested on CircleCI
o Merges to Master and Develop branches create and register deployable containers
o Passing CI tests on Master and Develop branches trigger deployment

4

https://circleci.com/

Oncoscape Continuous Integration and Delivery

 Continuous Deployment

o Circle CI triggers deployment services defined in Docker Cloud service
o Docker Cloud service pulls new container image from registry and deploys it to AWS
o The deployment is sequential so only one application server is updated at a time

 Event Notification

o Slack pushes notifications to smart phones
o STTR team notified of every CI event (pass or fail)
o Notifications of service redeployments
o Notifications of service health / recovery status

5

Oncoscape Integration and Deployment Workflow
 All work (commits) happens on feature branches off of the “develop” branch
 Every pushed commit is tested via the CI system
 Feature branches are merged to the “develop” branch via PR workflow
 The “develop” branch is merged to “master” branch via PR workflow

6

CI and SCM Integration

 Pull request status while CI testing is in progress:

 Pull request status after CI testing is complete; ready to merge without fear

7

Oncoscape Integration and Delivery Pipeline

 Fully Automated
 Commits/merges to any branch trigger build and testing
 Commits/merges to Develop or Master branches trigger deployment

8

Oncoscape Integration and Delivery Pipeline

 Fully Automated
 Commits/merges to any branch trigger build and testing
 Commits/merges to Develop or Master branches trigger deployment

9

Oncoscape Integration and Delivery Pipeline

Source Code Management
 Git
 GitHub

10

Oncoscape Integration and Delivery Pipeline

CI Tool

 CircleCI: https://circleci.com/
 Triggered via GitHub webhooks
 Clones repository
 Builds app inside a container
 Runs container
 Connects to Oncoscape application
 Tests Oncoscape application
 Notifies team via Slack of the results

PASS? Master or Develop?
 Push container image to registry
 Trigger deployment
 Notify team via Slack of the status

11

Oncoscape Integration and Delivery Pipeline

Image Registry

 Docker Hub: https://hub.docker.com/
 CircleCI pushes working images to registry
 Images publically available at:

https://hub.docker.com/r/fredhutch/oncoscape/

12

https://hub.docker.com/
https://hub.docker.com/r/fredhutch/oncoscape/

Oncoscape Integration and Delivery Pipeline

Deployment Service

 Docker Cloud: https://cloud.docker.com
 CircleCI triggers deployment via webhook
 Master image deployed to prod env
 Develop image deployed to dev env
 Sequential deployment
 Monitors containers
 Automatically restarts containers if they fail
 Reports events to team via Slack

Docker

Cloud

13

https://cloud.docker.com/

Oncoscape Integration and Delivery Pipeline

Server Environments

 Prod and Dev environments are identical
 Amazon AWS region located in Oregon
 2 Servers per environment; scale out
 Load balancers for load balancing and HA
 Servers running Ubuntu Linux 14.04
 Containers running under Docker Engine
 Containers monitored, deployed, re-

deployed, recovered by Docker Cloud service

14

Oncoscape Integration and Delivery Pipeline

Event Reporting

 Slack: https://slack.com/
 Status/results of CI runs
 Status/results of deployments
 Container health/recovery events

15

https://slack.com/

CI Build, Test and Deployment Metrics

16

Live Demo

17

 Single environment
 Single branch
 Continuous deployment

1 2

5

3 7

4

8

6Git GitHub

CircleCI

Slack

Docker Hub

Docker Cloud

Amazon AWS

Continuous Integration Tool Options
Solution Site SCM Support

Travis CI https://travis-ci.org GitHub

Circle CI https://circleci.com GitHub

CodeShip https://codeship.com GitHub, Bitbucket

Drone.io https://drone.io GitHub, Bitbucket

Shippable https://app.shippable.com GitHub, Bitbucket

Appveyor http://www.appveyor.com GitHub, Bitbucket, VSTS (visual studio online)

Distelli https://www.distelli.com GitHub, Bitbucket

Jenkins https://jenkins.io/ SVN, GitHub, Bitbucket, CVS, Perforce, TFS, …

Jenkins

18

CI & CD Principles

 Automate everything: build, test and deployment

 Keep everything in a source code management system (use GitHub)

 Keep absolutely everything in a source code management system

 Use a CI tool that integrates tightly (webhooks) with your source code repository

 Commit your code to the repository frequently

 Don’t commit directly to a delivery branch; use a feature branch and PR workflow

 Don’t ignore failing CI tests even on feature branches

 Don’t merge broken code to a delivery branch; it must pass the CI system first

 Deploy the same way to every environment

 No-downtime deployments; stateless frontend, load balancer and sequential
deployment

 Automated feedback on the entire process

 Use a container technology (Docker) if possible as makes deployment simple

 If the process is painful, you’re doing it wrong
19

20

Thank You!

To learn more about Oncoscape:
 Home page: http://www.sttrcancer.org/en/biotools/oncoscape.html

 Code repository: https://github.com/FredHutch/Oncoscape

 Application: https://oncoscape.sttrcancer.org

